

PROCESSING AND ANALYSIS OF MICROSCOPIC IMAGES IN BIOMEDICINE (PAMIB), April 13-17, 2026

13st April – Monday

9:00 - 9:45 **Digital image formation and terminology, Michaela Blažíková, lecture**

The lecture introduces you to the formation of digital images, basic principles of cameras, and image discretization. It will explain what pixels, pixel size, resolution, bit depth, magnification, field of vision, histogram, LUT are.

Keywords: image formation, pixel, intensity, resolution, sampling.

9:50 - 10:35 **Introduction into Fiji - Part1, Jan Valečka, practicals**

What is Fiji useful for? What is a multipage image? Where do we have colors coded? Grayscale vs. RGB; channels vs. stacks, hyperstacks.

Aims: We will do Fiji installation and solve update issues, demonstrate file opening/file type setting/bit depth setting/file saving, contrast/brightness adjusting/image resizing. Then we will work with channels, split and merge images, define channel color, learn image stacks/hyperstacks, something about image dimensionality and setting image properties.

Keywords: file type, image adjustment, stack, hyperstack, multipage image, LUT.

10:55 - 11:40 **Introduction into Fiji - Part2, Jan Valečka, practicals**

Aim: In this practical we will continue with our work in Fiji and will learn basics of image manipulation.

11:45 - 12:30 **Image analysis in Fiji, Michaela Blažíková, practicals**

Aims: We will examine several simple image analysis tools available in Fiji. Using examples, we will learn how to work with ROI manager, how to use profile plots. We will use thresholding to measure characteristics of objects in the image, find edges and maxima in the image. We will count particles in 2D and 3D, perform 2D image registration, create a kymograph and learn how to use plugins.

Keywords: ROI, thresholding, image registration.

12:30 - 13:30 Lunch

13:30 - 14:15 **Fiji: Stand-alone practical tasks**, *Michaela Blažíková*, **practicals**

Aims: The participants will work on selected simple image processing and analysis tasks on their own, using Fiji software.

Keywords: hyperstack, image adjustment, ROI, thresholding.

14:20 - 15:05 **Specifics of visualization and image interpretation in electron microscopy**,

Dominik Pinkas, **lecture**

Aims: A brief introduction to the principles of image formation in two-dimensional and volumetric electron microscopy, including a range of electron tomography approaches. The overview addresses how sample preparation influences data characteristics, the nature and limits of the information that can be extracted, and key differences in comparison with light microscopy.

15:10 - 15:55 **Fiji/MIB: Introduction to electron microscopy data processing**,

Markéta Dalecká, **practicals**

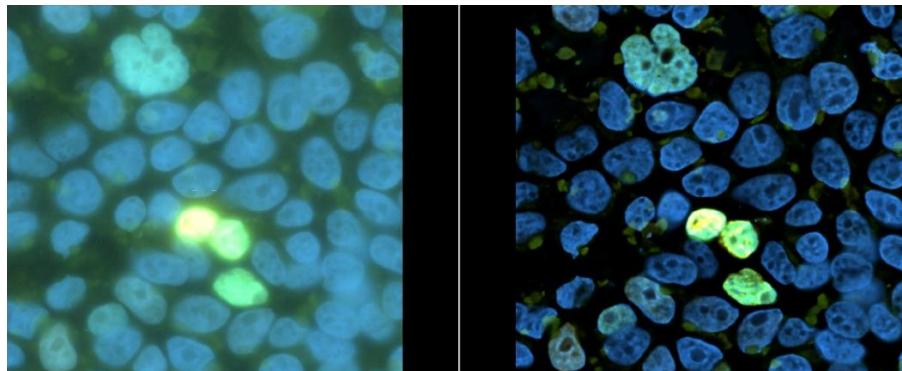
Aims: The session introduces fundamental electron microscopy (EM) data processing workflows using Microscopy Image Browser (MIB) and ImageJ. Participants will gain hands-on experience with essential tasks such as contrast optimization, noise reduction, image alignment, and an introductory exploration of segmentation workflows.

14th April – Tuesday

9:00 - 9:45 **Image acquisition conditions and deconvolution, Ivan Novotný, lecture**

The image acquisition and requirements for successful deconvolution will be described together with description of various microscope types and their specificity. Quality of images regarding deconvolution results will be discussed as well.

Keywords: widefield fluorescent microscope, confocal microscope, STED, point spread function (PSF), z-stack, SNR.


9:50 - 10:35 **Huygens: Image deconvolution I, Ivan Novotný, practicals**

10:55 - 11:40 **Huygens: Image deconvolution II, Ivan Novotný, practicals**

11:45 - 12:30 **Huygens: Image deconvolution III (stand-alone practical tasks), Ivan Novotný, practicals**

Aims: Practical deconvolution of various microscopic data. Image metadata and image parameters for the deconvolution. Parameters of the deconvolution – SNR, iterations, quality threshold.

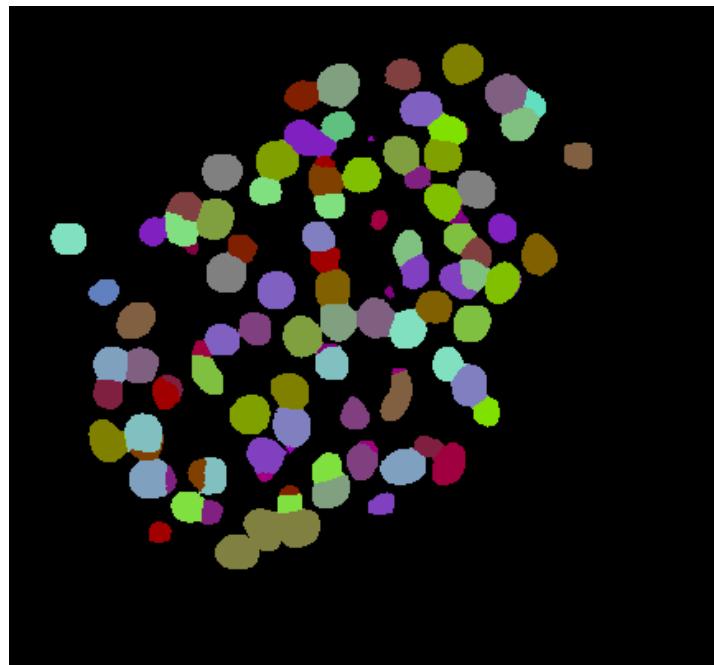
Keywords: Image metadata, image parameters, deconvolution, Huygens, SNR.

12:30 - 13:30 **Lunch**

13:30 - 14:15 **Segmentation methods, Martin Čapek, lecture**

We will define what segmentation is, classify segmentation methods and will describe individual basic approaches, like region growing and splitting, Watershed transform, thresholding, model-based comparisons, active contours, and others. We will show how to use Fiji for solution of segmentation tasks.

Keywords: segmentation, object finding, thresholding.


14:20 - 15:05 **Fiji: Using segmentation for detection of structures in various microscopic images,**
*Martin Čapek, **practicals***

Aims: 1. To do simple segmentation tasks using a micro CT image of a tooth; 2. To automatically count number of red blood cells in a phase-contrast image by the Watershed transform; 3. To detect erythrocytes in a DIC (differential interference contrast) image using template matching; 4. Simple segmentation using Level Sets; 5. To remove air bubbles in 3D data acquired by an optical projection tomography microscope (OPT) by using Segmentation Editor plugin.

Keywords: region growing, Watershed transform.

15:10 - 15:55 **Fiji: Artificial Intelligence (AI) Approaches to image segmentation,**
*Martin Čapek, **practicals***

Aim: By using plugins in Fiji that incorporate techniques of artificial intelligence – Trainable Segmentation Weka, StarDist – we will segment objects of interest in microscopic images.

15th April – Wednesday

9:00 - 9:45 **Fiji: Macros - Introduction into IJM language, Jan Valečka, [lecture with demos](#)**

The lecture will give you the basics of ImageJ Macro (IJM) language. This includes knowledge of variables, operators, conditional and looping statements, strings, debugging macros, built-in macro functions, which is necessary for creating your own macros.

9:50 - 10:35 **Fiji: Using macros for data processing and analysis, Jan Valečka, [practicals](#)**

Aims: Introduction into macro recorder and macro editor. Creating macros for segmentation and counting nuclei in multiple images by using macros; the automatic processing of open images.

10:55 - 11:40 **Evaluation of colocalization in microscopic images, Martin Čapek, [lecture](#)**


This lecture explains conditions for getting images suitable for colocalization, with image pre-processing, and describes basic colocalization approaches, like Pearson's correlation coefficient, Manders' coefficients, Costes' methods, Van Steensel' approach. Object based colocalization, free programs and Fiji plugins available for image colocalization will be discussed as well.

Keywords: colocalization, image similarity, Pearson's correlation coefficient.

11:45 - 12:30 **Fiji: Evaluation of colocalization in various microscopic images, Martin Čapek, [practicals](#)**

The **goal** of this exercise is to evaluate the colocalization in high quality image data using *BIOP JACoP* plugin (*Just Another Colocalization Plugin*) and to analyze low quality noise images and data with bleed through using *Coloc 2* plugin. Images of a dimeric protein stained with green and red dyes, respectively, and images of cells stained by GFP and DAPI will be used as examples.

Keywords: low quality microscopic data, colocalization, *JACoP*, *Coloc 2*.

12:30 - 13:30 [Lunch](#)

13:30 - 14:15 **Tracking – principles and algorithms**, *Michaela Blažíková*, [lecture](#)

In this lecture we will focus on methods used to determine the parameters of the movement of intracellular organelles and protein complexes, specifically their velocity and trajectory. Together with changes in organelle sizes and changes in fluorescence, the resulting information represents an output that uniquely characterizes the specific process. Examples from projects that enabled us to clarify character of movement and interactions of intra-nuclear proteins, localization of proteins into cell membranes and dynamics of endoplasmic reticulum will be presented.

Keywords: tracking, trajectory, localization.

14:20 - 15:05 **Fiji: Tracking – practicals**, *Michaela Blažíková*, [practicals](#)

Aims: To track objects in the image during the time lapse experiment using several Fiji plugins. The participants will obtain several time series with moving objects and areas. Using Fiji plugins, we will track the objects in time, characterize their movement using velocity and trajectory, and compare the results.

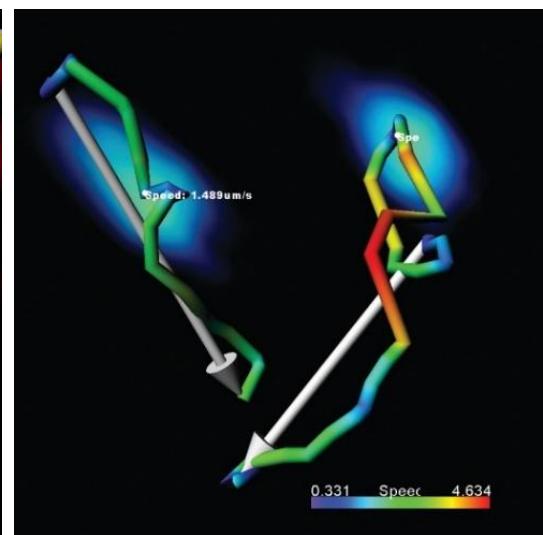
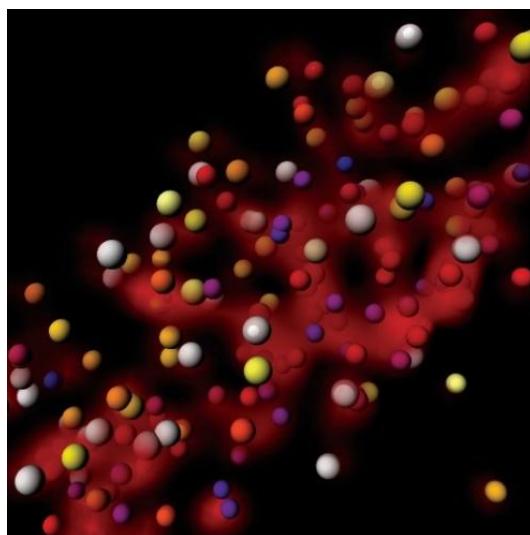
Keywords: tracking, movement characterization, localization.

15:10 - 15:55 **Guidelines for processing and presenting microscopy images in scientific publications**, *Jan Valečka*, [lecture](#)

Aims: This theoretical lecture will provide specific guidelines for showing microscopy images in presentations and how to process them for scientific publications, what adjustments are allowed and what are not allowed.

16th April – Thursday

9:00 - 9:45 **3D and 4D image visualization and analysis in Imaris,**
Oxford Instruments, <https://imaris.oxinst.com/>, **distant online lecture**



Imaris includes a set of key tools, which cater for the needs of researchers in live cell imaging and developmental biology, but also in Neurobiology. Furthermore, it addresses the ability to work on large datasets. The available tools include:

- Visualization of terabyte multidimensional data sets
- Detection, tracking and analysis of cells and organelles
- Tracking of cell division, lineage analysis
- Rotational and translational drift correction
- Angle measurements
- Neuron and spine analysis
- Colocalization studies
- A wide range of plugins (XTensions) and advanced interactive plotting for results exploration and comparison between samples

9:50 - 10:35 **Imaris: Examples of interactive image analysis and visualization (using cloud computers),** Oxford Instruments, <https://imaris.oxinst.com/>, **online practicals using cloud computers**

Aims: Introduction into the basic functionalities for experiment data management, visualization and segmentation of the 3D and 4D microscopy datasets. Multiple volume rendering and modes, clipping planes, cross-section slices, animations and snapshots will be demonstrated:

- User interface - Arena/Surpass/Vantage
- Surface detection and extraction of statistical data
- Spots detection and extraction of statistical data
- Tracking examples
- Colocalization

10:55 - 11:40 **FRAP data analysis, Michaela Blažíková, lecture**

One of the very important and very fast microscopic methods for analysis of protein dynamics in a specific cell region is FRAP (fluorescence recovery after photobleaching). It is based on the principle that we can bleach the fluorescence of selected fluorescence proteins by their targeted high intensity illumination. In the illuminated region no recovery of the fluorescence is assumed, therefore, the fluorescence that starts to appear in the photobleached region results from proteins that come from unbleached areas. According to properties of the curves describing the fluorescence recovery we can deduce the amount of mobility of the specific protein. In this lecture the FRAP method and its modifications will be presented and especially possibilities of its evaluation will be discussed.

Keywords: photobleaching, FRAP, FRAP parameters, mobility.

11:45 - 12:30 **Fiji: FRAP data analysis, Michaela Blažíková, practicals**

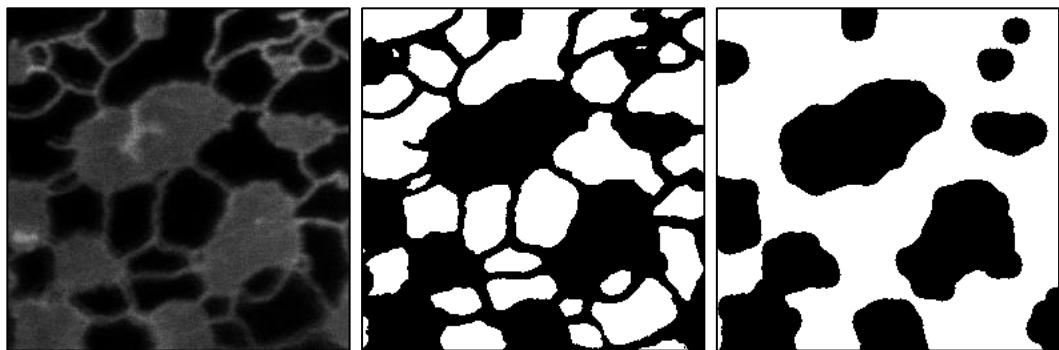
Aims: To determine the mobility of small nuclear ribonucleoprotein particles (snRNP) that move around and interact inside the cell nucleus using FRAP (fluorescence recovery after photobleaching). The participants will obtain time series of fluorescence images with snRNP-GFP. A complete FRAP experiment, i.e. the situation before photobleaching, closely after photobleaching and in a few time points during the recovery will be provided. The aim of this task is to evaluate the presence of the signal in both bleached and reference areas and to determine the representation of mobile and immobile protein fraction.

Keywords: FRAP, curve fitting, curve parameters, mobility.

12:30 - 13:30 [Lunch](#)

13:30 - 14:15 **3D image processing and geometrical modelling, Jiří Janáček, lecture**

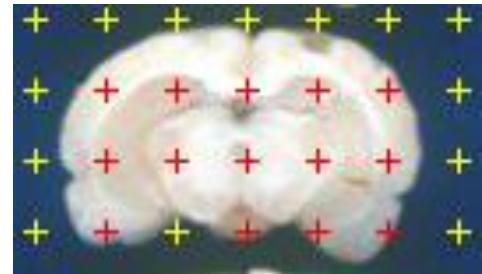
Main topics of the talk are the processing of 3D biomedical images and visualization of the spatial data. Detection of capillaries in confocal images and construction of 3D models from tomographic data or physical sections will be presented.


- Data sources: CLSM, MRI, tomography, registration of physical slices.
- Voxel size determination, correction of sample shrinkage.
- Filtration, segmentation and isosurface detection.
- Measurement of volume, surface area and length in 3D.
- 3D visualization: volume and surface rendering; visual cues: stereoscopy, motion, shading and texture.

Keywords: 3D reconstruction, triangulated isosurface.

14:20 - 15:05 **Fiji: Image filtration / Morphological image processing and analysis, Jiří Janáček, practicals**

Aims: Basic microscopy image processing and segmentation with Fiji using linear filtration and mathematical morphology filters. Important features on 2D images (thick objects, fibers, dots) and on 3D images (thick objects, surfaces, fibers, dots). Properties of image noise.


- Gaussian filter and its action on noisy image features.
- Morphological operations (erosion, dilation, opening, closing, volume opening) for artefacts removal.
- Rolling ball and Lipschitz filter for background removal.

Keywords: mathematical morphology, image noise, image filtration, Gaussian filter.

15:10 - 15:55 **Stereological methods and measurement, Barbora Radochová, lecture**

This is an introductory lecture on stereology and sampling. Several methods used in stereology will be explained together with the principle of systematic uniform random (SUR) sampling. Stereological methods can be used for estimating geometrical features like volume, length, surface area and number of particles. You will learn at least one method for each type of feature.

Keywords: stereology, volume, surface area, length, number.

17th April – Friday

9:00 - 12:30 **Estimation of volume and surface area (Point Grid, Cavalieri's principle and Fakir), Barbora Radochová, practicals in two parallel separated groups**

Aims: We will learn how to estimate: 1) volume of a rat's brain using Point grid method and Cavalieri's principle in FIJI (Grid Tool); 2) volume of a real carrot using the principle of systematic uniform random (SUR) sampling; 3) volume and surface area of an isolated pancreatic islet using Fakir method (Fakir sw).

Keywords: point counting, Cavalieri's principle, SUR, Fakir

Estimation of length and particle numbers (Slicer, Disector), Barbora Radochová, practicals in two parallel separated groups

Aims: We will learn how to estimate: 1) length of capillaries in a rat's brain using Slicer method (Slicer sw); 2) number of cells in a rat's brain using Disector method in FIJI (plugin Disector).

Keywords: Slicer, Disector, particle counting

9:00 - 12:30 **3D image processing and geometrical modelling, Jiří Janáček, practicals in two parallel separated groups**

Aims: Main topics of the talk are the processing of 3D biomedical images and visualization of spatial data. Detection of capillaries in confocal images and construction of 3D models from tomographic data or physical sections will be presented.

- Data sources: CLSM, MRI, tomography, registration of physical slices.
- Voxel size determination, correction of sample shrinkage.
- Filtration, segmentation and isosurface detection.
- Measurement of volume, surface area and length in 3D.
- 3D visualization: volume and surface rendering; visual cues: stereoscopy, motion, shading and texture.

Keywords: 3D reconstruction, triangulated isosurface.

**Vibe coding: Using chatGPT for IJM macro developing, Martin Čapek,
practicals in two parallel separated groups**

Aims: This practical introduces a complete, reproducible ImageJ/Fiji workflow for basic object-based image analysis. Students learn how to load an image from disk, perform segmentation using automatic thresholding and connected-component labeling, generate and save a labeled image, and quantify object size and shape using standard morphometric measurements. The workflow demonstrates how measurement results are stored and exported to a CSV file for further analysis, and how simple exploratory data analysis can be performed by visualizing relationships between shape descriptors (such as perimeter and eccentricity or aspect ratio). Emphasis is placed on understanding the practical assumptions and limitations of ImageJ's built-in tools, preparing students for both in-software analysis and downstream processing in external environments.

12.30-13.00 Final course evaluation and Certificates handover

13.00-14.00 Informal lunch